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Abstract— Biological systems have a remarkable abil-
ity to learn from the world. As engineers, we try to
build autonomous agents that interact and adapt in
open, partially unpredictable environments; our ap-
proach consists in looking into biology trying to under-
stand and generalize some of the crucial mechanisms
that are neccesary for learning and adaptation. This
paper describes an artificial neural network that learns
to classify different visual stimuli using both supervised
and unsupervised mechanisms. The system consists of
a segmentation network that separates the different ob-
jects in a visual scene; a network that learns internal
representations of the visual stimuli; and a network
that learns to classify the acquired internal representa-
tions. The structure of the system and all its mecha-
nisms are inspired by biological findings. We tested the
system using real grey-level images from a camera. The
result is a system that is robust against noise and learns
to classify objects independently of their position with
respect to the camera.
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I. INTRODUCTION

Despite all the scientific and engineering effort in the
last decades, biological systems remain orders of mag-
nitude more robust, adaptive and flexible than arti-
ficial ones [1]. In this paper we introduce an arti-
ficial learning system for classification of visual im-
ages that incorporates several of the principles of or-
ganization that have proved essential for the success
of autonomous biological agents. It incorporates a
visual system capable of robust object segmentation
and recognition based on very adaptive neural princi-
ples; it includes synchronization in cortical structures
to achieve segmentation of visual scenes and unsuper-
vised learning of internal representations of the dif-
ferent objects views. These representations are then
associated to their corresponding class through a su-
pervised learning mechanism.

II. OVERVIEW

On the first stage of the process a gray level image of
320 x 240 pixels is captured by the camera. The image
is filtered and processed in order to reduce it to a ma-
trix of ones and zeros, which will be used as input for
the next steps. In figure 1 we show a general schema of
the whole system. After the initial pre-processing, seg-
mentation is performed using a low resolution version
of the image. Once the objects have been separated
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they are used to filter the original image. This filtered
image, that keeps the initial resolution, will be used as
input to the subsequent layers. The last step before
it can be recognized is a normalization that provides
position invariant representations of the objects. In
the following sections we describe in detail each of the
mentioned processing steps.
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Fig. 1. Schematics of the visual system.
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III. OBJECT SEGMENTATION

The image is segmented using a network in which
the different objects (connected regions) in the visual
scene are represented by groups of synchronized neu-
rons. In the last years there has been an increasing
insterest on the role synchronization should play in
the processing of information by neural systems ([2],
[3], [4]). Therefore, using a synchronization-based so-
lution to the problem of visual segmentation we are
going a step closer to the robustness of biological sys-
tems. The network is based on previous works ([5],
[6]). Each pixel in the image is connected as input to
a pair of one excitatory (A) and one inhibitory (B) in-
tegrate and fire neurons mutually connected. A units
are locally coupled to nearest neighbors and connected
to a population of inhibitory neurons (C) that send
inhibition to all the network (see figure 2). The dy-
namics of all the units in this network are given by:
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where v; represents the leakage conductance and V;¢%t
the membrane equilibrium potential of the neuron i.
The sum extends to all the neurons connecting the
neuron i, gj; being the synaptic conductance and Vj;



the synaptic reversal potential. After a presynaptic
spike the conductance is assumed to rise instanta-
neously from 0 to the value ¢7;°®, and to keep this
value for a short period of time T};, according to the

equation:
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where O(z) is the Heaviside function and té-‘”t is the
time of the last spike of the presynaptic neuron j. The
parameters in the previous equations vary depending
on the type of unit and the type of connection, and
are tuned so that:

1. Only units connected to an active pixel can fire.

2. When a A unit fires it excites its corresponding
B unit, its neighbor A units and the population of C'
units.

3. When a B unit fires it inhibits its A unit, giving
rise to a period of inactivation of unit A.

4. When the C units fire they inhibit the A units,
inactivating all of them except those receiving a high
synaptic current from their neighbors.

With all these elements, the segmentation mechanism
makes all the A neurons belonging to the same ob-
ject fire synchronously; the competition implemented
through the global inhibitor C' guarantees that neu-
rons responding to different objects fire at different
times.
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Fig. 2. Structure of the segmentation network. Local connec-
tions between E units have been omitted for clarity.

IV. LEARNING TO CLASSIFY THE OBJECTS

On the next stage a second network processes the seg-
mented images, previously normalized in order to have
position-independent representations of the objects.
This network is composed of a first part that acquires
internal representations of the objects and a second
part that associates classes to these internal represen-
tations.

A. Learning internal representations of the objects

The first part of the learning network is inspired by
previous models of self-organization in cortex ([7], [8])
that learn to discriminate between the different stimuli
in the environment.
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Fig. 3. Structure of the recognition network. Excitatory con-
nections are represented by arrows, inhibitory ones by cir-
cles. All dashed connections are plastic.

There are two types of units (output neurons, I, re-
sembling pyramidal neurons in the biological system,
and inhibitory interneurons, II), both with firing rate
dynamics. They are modelled by the equations:
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where V;(t) is the level of excitation of unit j, a is a
constant between 0 and 1, V2(¢) is the level of acti-
vation of unit 4 in the input layer, and v and w;; are
the gain and the strength of the corresponding con-
nections. A[X] is the output activity of a unit with
excitation level X, defined as:

AlX]=0(X - Vp)X (5)

where O(z) is the heaviside function, and Vpy is the
firing threshold of the unit. Each I unit receives feed-
forward connections from the whole input layer (seg-
mented normalized image), lateral connections from



the other I units and inhibitory connections from all
the II units. Each II unit receives excitation from a
I unit (see figure 3). The connections from the input
layer to layer I are initially randomly distributed be-
tween 0 and 1, making all the I units excitable by any
visual stimulus. However, these connections are mod-
ifiable by experience, increasing the selectivity and
specificity of I units: if at the moment t when the unit
j in layer I starts firing (A[VjI (t)] becomes greater than
0) its inhibitory input is smaller than a fixed value C,
then the synapses it receives from the input layer are
subject to change (the unit ’learns’). This learning
constraint is biologically plausible as discussed in ([8],
[9]). Its role is to focus the learning to a small subset
of the I units that initially respond to the stimulus, ’re-
serving’ the other units for learning different stimuli
([8], [9]). In order to make the learning in the net-
work robust against transients, a synapse also needs
to be activated during at least a period of time P to
be modified. Then,

Aw(t) = a (6)

The sign of « is positive when A[V2(¢)] > 0, and nega-
tive if A[V2(t)] = 0 (homosynaptic LTP and heterosy-
naptic LTD in biological terms, [8]). This mechanism
makes the response of the unit more specific to the
input stimulus. The strengths of these synapses are
constrained within the [—1, 1] range. The gain 7 also
adapts when the unit is learning:
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This mechanism normalizes the excitation a unit re-
ceives. Therefore, when a unit has learned its opti-
mal stimulus, the level of excitation it receives when
this stimulus is present is near V4, , independently of
the number of input units that code the visual stimu-
lus, preventing malfunctioning and network overexci-
tation. If this mechanism is not present, a unit that
learns to fire to a cross would have strong excitatory
input, firing also to a small part of it (like the vertical
bar). The gain 7J and the connection weights w?j are
'frozen’ when the learning dynamics for the I unit j
has converged. This makes the network more stable.
Finally, lateral inhibitory connections between units
I are initially null, being modifiable through expe-
rience. They implement competition between these
units. Hence, they allow a subset of units that learn
to recognize a particular stimulus (and are responding
to it) to decrease the activity in the other units. In
case A[V/(t)] > 0 and the ith neuron in layer I learns
the stimulus during at least a period of time P the
synapse w}j is strengthened.

B. Association of classes to internal representations

We use a third neural network that learns to classify an
internal representation of the object. It learns to as-
sociate visual stimuli with their corresponding classes.

The dynamics of the neurons are the same as in the
previous network. In figure 4 we represent schemati-
caly the structure of this network.
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Fig. 4.  Structure of the classification network. When the
teacher externally activates one of the C; units in the pres-
ence of a neutral stimulus, the connection between this unit
and the neuron coding the stimulus in layer I is strength-
ened.

We consider two different units (Cy,C>) used by the
system to classify the stimulus as ’bad’ or ’good’ re-
spectively. Implicitly the system classifies the stimulus
as neutral in case none of the C; units is active. There
is mutual inhibition between C; and Cs, so that the
most active C; stops the activation of the other, hence
having the network perform a single classification. C;
units receive connections from layer I. These connec-
tions associate a visual stimulus (coded by layer I)
with the corresponding object class. Initially, these
connections are null, which makes all the visual simuli
initially neutral (none of them activates the C; units).
When the system is processing a novel object the ex-
ternal teacher can classify it by activating one of the
C; units. Because the connection from unit ¢ in layer I
to C is strenghtened if they are simultaneusly active,
the network associates the unit in I that represents
the visual input from the object with its class. With
this mechanism the system learns to classify objects
by activating units C; with no need of the teacher,
predicting when the same visual stimulus is present
the class the teacher would have given.

V. RESULTS

To test the system we have used grey-level images from
a camera. The segmentation network was able to sep-
arate appropiately different objects in the same image,
and the internal representations learned in the second
network showed to be robust against noise: a unit that
learns to detect a visual stimulus also detects pertur-
bations of that image in certain range. Because of this
just a few units are neccesary to detect an object in
any position. The association of the internal repre-
sentation of the object view with the object class was
succesfully implemented: for novel objects the infor-
mation about their class was given to the system, and
the network was able to perform correct classifications
on subsequent perturbed and unlabeled presentations.
Finally we tested the system on an autonomous robot
with a camera as its only sensor. The visual informa-
tion processed by our model proved to be sufficient for
the robot to achieve simple tasks in a controlled en-



vironment (e. g. avoiding obstacles and approaching
objectives).

VI. CONCLUSIONS

In our experiments we considered just two classes but
the architecture is perfectly extensible to N classes.
We conclude that the properties showed by the system
make it useful for real world applications, e. g. artifi-
cial vision systems. In addition the parallel structure
of the system makes it very suitable for parallel VLSI
implementation. Finally we suggest that the study
of biological systems can give rise to the development
of new architectures that process sensory information
and learn optimally from complex environments.
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